Gas density monitor Model GDM-063

WIKA data sheet SP 60.70

for further approvals, see page 4

Applications

- Medium-voltage equipment
- Gas density monitoring of closed SF₆ gas tanks
- Raising an alarm when defined limit values have been reached

Special features

- Case and wetted parts from stainless steel
- On-site display with switch contact
- Temperature-compensated and hermetically sealed, therefore no influence of temperature fluctuations, differences in level and atmospheric pressure fluctuations
- Compensation possible for gas mixtures
- Traceability by serial number

Gas density monitor model GDM-063

Description

Gas density is a crucial operating parameter for mediumvoltage switchgear. If the required gas density is not present, safe operation of the plant cannot be guaranteed.

The WIKA gas density measuring instruments provide reliable warnings against dangerously low gas levels, even under extreme ambient conditions. Electrical switch contacts warn the plant operator when the gas density drops below defined levels due to leakage.

Numerous application areas

The WIKA gas density monitor is hermetically sealed and temperature-compensated. Measured value fluctuations and erroneous alarms caused by changes in either ambient temperature or atmospheric pressure are therefore prevented.

Via the on-site display, the pressure can be read directly on the instrument with reference to 20 °C [68 °F]. With the integrated switch contacts, simple switching tasks can be realised guickly and without complication.

Gas density monitor

Nominal size

63

Calibration pressure PE

To customer specification

Accuracy specifications

- ±1 % at ambient temperature +20 °C [+68 °F]
- ±2.5 % at ambient temperature -20 ... +60 °C [-4 ... +140 °F] and with calibration pressure in accordance with reference isochore (reference diagram KALI-Chemie AG, Hanover, prepared by Dr. Döring 1979)

Scale ranges

Selectable versions		
Option 1	-1 +1 bar [-14.5 +14.5 psi]	
Option 2	-1 +3 bar [-14.5 +43.5 psi]	

Others on request

Permissible ambient temperature

Operation: -30 ... +60 °C [-22 ... +140 °F], gaseous phase Storage: -50 ... +60 °C [-58 ... +140 °F]

Process connection

G ¼ B per EN 837, back mount Stainless steel, spanner flats 14 mm

Other connections and connection locations on request.

Pressure element

Stainless steel, welded Gas-tight: leakage rate $\leq 1 \cdot 10^{-8}$ mbar $\cdot 1/s$ Test method: helium mass spectrometry

Movement

Stainless steel

Bimetal link (temperature compensation)

Dial

Aluminium

The scale range is subdivided into red, yellow and green ranges

Pointer

Aluminium, black

Case

Selectable versions		
Option 1	Stainless steel, with gas filling	
Option 2	Stainless steel, with fill fluid	

Gas-tight: leakage rate $\leq 1 \cdot 10^{-5}$ mbar $\cdot 1/s$

Window

Selectable versions		
Option 1	Laminated safety glass	
Option 2	Acrylic glass	

Ring

Bayonet ring, stainless steel, secured by means of 3 welding spots

Permissible humidity

≤ 90 % r. h. (non-condensing)

Ingress protection

IP65 per EN 60529 / IEC 60529

Weight

With gas filling: approx. 0.8 kg [1.76 lb] With fill fluid: approx. 1.2 kg [2.64 lb]

High-voltage test 100 %

2 kV, 50 Hz, 1 s

Switch contacts

Electrical connection

Cable outlet, length 1 m Cable bushing from glass

Number of switch contacts

Selectable versions		
Option 1	1 magnetic snap-action contact	
Option 2	2 magnetic snap-action contacts	
Option 3	3 magnetic snap-action contacts	

Switching directions

Selectable versions		
Option 1	Falling pressure	
Option 2	Rising pressure	

Switching functions

Selectable versions		
Option 1	Normally closed	
Option 2	, ,	
Option 3		

Circuits

Selectable versions		
Option 1	Galvanically connected (not for change-over contact)	
Option 2	Galvanically isolated	

Switching accuracy

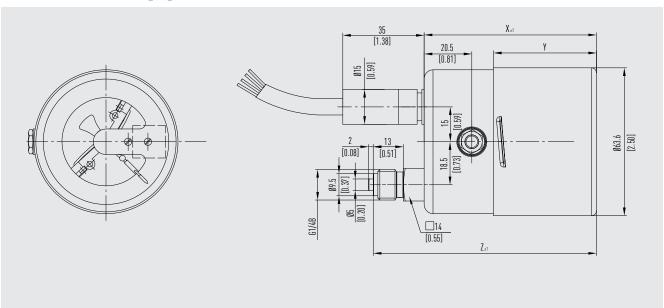
Switch point = calibration pressure PE: see accuracy specifications

Switch point ≠ calibration pressure PE: Parallel to the reference isochore of the calibration pressure

Switching voltage

AC (50 ... 60 Hz) / DC 24 ... 250 V (no undulating voltage)

Switching power


With gas filling: 30 W / 50 VA, max. 1 A With fill fluid: 20 W / 20 VA, max. 1 A

Material of switch contacts

80 % Ag / 20 % Ni, gold-plated

Further information on magnetic snap-action contacts in data sheet AC 08.05 and IN 00.48.

Dimensions in mm [in]

Switch contact model 821	Dimensions in mm [in]		
	х	у	z
Single and double contacts, without galvanic isolation	66.5 [2.62]	35.5 [1.40]	88.5 [3.48]
Double contacts, with galvanic isolation	75.3 [2.96]	44.3 [1.74]	97 [3.82]
Triple contacts, with galvanic isolation	87.1 [3.43]	56.1 [2.21]	109.1 [4.30]

Approvals

Logo	Description	Region	
CE	EU declaration of conformity	European Union	
	Low voltage directive		
	RoHS directive		
UK	UKCA	United Kingdom	
CA	Electrical equipment designed for use within certain voltage limits in support of the electrical equipment (safety) regulations		
	Restriction of hazardous substances (RoHS) regulations		

Optional approvals

Logo	Description	Region	
EAC	EAC	Eurasian Economic	
CUL	Low voltage directive	Community	

[→] For approvals and certificates, see website

Ordering information

WIKA data sheet SP 60.70 · 11/2022

Model / Process connection / Pressure unit / Measuring range / Filling pressure / Switch configuration / Gas mixture / Options

© 01/2022 WIKA Alexander Wiegand SE & Co. KG, all rights reserved.

The specifications given in this document represent the state of engineering at the time of publishing. We reserve the right to make modifications to the specifications and materials.

Page 4 of 4